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Both the formation of free volume and the elementary motion characterizing the plastic deformation 
in the glassy state are described here by the same molecular process, consisting of the transition of a 
given number of chain segments from fundamental to activated states. Using this basic assumption, a 
model is proposed which makes use of classical laws of thermodynamics. Five parameters need to be 
adjusted to take into account the thermodynamic properties related to the free volume: one more is 
necessary to characterize the molecular process of plastic deformation. The pressure dependence of 
Tg and the difference between the specific volumes found in the glassy state from isothermal and iso- 
baric measurements can be calculated from the model. Fairly good agreement is found between the 
theoretical and experimental values of these quantities. The physical meaning of constants belonging 
to a previously-proposed yield criterion is clarified, and these constants are given as a function of the 
molecular process. Moreover, the treatment confirms that the glass transition temperature is related 
to a constant fraction of activated segments and not to a constant value of the free volume. 

INTRODUCTION 

Since the early work of Williams, Landel and Ferry', many 
treatments of the glass transition have been proposed. Some 
are complex, none is convincing. Here, we present a new 
analysis of the concept of free volume; the glass transition is 
formulated, supported by classical equations and simple 
assumptions. An attempt is made to show that plastic defor- 
mation in the glassy state and the formation of free volume 
are governed by the same process. 

Numerous papers, both theoretical 2-4 and experimental s-7, 
admit that above the glass transition temperature Tg, the mole- 
cular motions occurring in a polymer are related to free 
volume. From dilatometry performed under hydrostatic 
pressure 7-9, it has been shown that Ehrenfest's law is not 
valid for polymers. A theory implying a single ordering para- 
meter cannot hold. Ehrenfest's law implies that: 

dTg_ ~ 
dp Act 

(1) 

where p, z~ and Aa denote respectively pressure and increase 
of compressibility and thermal expansivity above Tg. Several 
investigators ~°-'2 have shown that the theory of activated 
processes 13 is capable of giving a correct description of 
motion in glassy polymers, but a correlation between this 
theory and free volume has not yet been attempted. 

We propose a model which takes into account both 
thermodynamic theory and plastic deformation in the glassy 
state; this model leads to relations previously given empiri- 
cally by Simha and Boyer '4 and shows how Tg varies with 
hydrostatic pressure. The pressure dependence of the specific 

volume, V, is analysed and Av, the observed difference in 
specific volume between values obtained from isothermal 
and isobaric measurements, is explained allowing Av/V to 
be calculated. Numerical results agree well with data in the 
literature. 

Finally, we give an interpretation of the nature of the ele- 
mentary process of plastic deformation in the glassy state, 
suggested by the model. The calculated values for the para- 
meters characterizing the plastic deformation are observed 
to fit the data. 

MODEL 

The assumption is made that a chain segment may lie either 
in a fundamental state not related to any free volume, or in 
m activated states associated with the formation of free 
volume. For example, these activated states may correspond 
to flexed bonds. 

Let Q be the mean increase in energy and v0 the mean free 
volume which an activated segment needs and let us a s s u m e  

a one-to-one correspondence between v 0 and such segments. 
Above Tg, when complete temperature equilibrium is reached, 
the fraction of activated segments, P, may be expressed to a 
first approximation by: 

m exp(-a/R 7') 
P = (2) 

1 + m exp(-Q/RT) 

where T denotes the absolute temperature and R the gas con- 
tent. Equation (2) may be used to compute P as a function 
of R T/Q for several values of m. Results are shown graphi- 

0032-3861/80/060699-07502.00 
(C) 1980 IPC Business Press POLYMER, 1980, Vol 21, June 699 



Free volume and the plastic deformation process: J.-C. Bauwens 

, , / / /  / 03  
~ l ~ /  ~'/ ~ /  

0.2 
q, 

Ol  

d.1 o'.2 o'-3 0'4 o'.s 
RT/O 

Figure 1 P as a funct ion of RT/O for  several values of m (calculated 
f rom equation 2) 

cally in Figure I where it can be seen that the different 
curves reduce to straight lines for P/> 0.1. 

P gives rise to a dilatation defined as follows: 

Av v 0 
- P (3) 

v v0 

where V 0 is the volume occupied by a segment in the funda- 
mental state. Because it requires the formation of free 
volume, the transition from the fundamental to activated 
states leads to an increase in thermal expansivity, given by: 

v 0 dP 
A ~  - (4) 

V 0 dT 

This transition is further accompanied by an increase in the 
specific heat ACp, given by: 

Q d P  
a c p  - (5) 

M dT 

where M denotes the molecular weight of a segment. Equa- 
tion (5) can be rewritten as: 

R dP R 
A Cp - M R ~  - M f(m, R T/Q) (6) 

We may consider that above Tg, P is greater than 0.1 (see 
below) and therefore varies linearly with RT/Q, which im- 
plies that (M/R)ACp depends only on m. 

In this case, equation (6) reduces to: 

dP M 
f(m) - - -  - ACp (7) 

Thusf(m) remains constant for a given value o fm and may 
be obtained, for example, from the graphs of Figure 1, or 
calculated from equations (7) and (2); the variation of this 
quantity as a function of m is given in Figure 2. 

If  the activated states correspond to flexed bonds, we may 

consider (see Robertson ~s) that a flexed bond consists of the 
smallest chain segment containing two non-rigid and non- 
colinear bonds. If so, M can easily be evaluated for the 
three polymers considered here, i.e. poly(vinyl chloride) 
(PVC), poly(methyl methacrylate) (PMMA) and polystyrene 
(PS) and thus is simply equal to the moecular weight of  the 
monomer unit. f(m) may thus be calculated from ACp using 
equation (7), and m may be obtained from f(m) together 
with the graph of Figure 2. Results are given in Table I and 
the data in Tables I and 2. A problem arises because of the 
discrepancy between the data related to ACp given in the 
literature (see Table 2 where two extreme values are given); 
this is why the values of m obtained are approximate. 

For the sake of simplicity, we will continue with a given 
value o f m  lying between 10 (found for PVC) and 30 (found 
for PMMA and PS), say, 

m = 20 (8) 

and which is related to the value o f f ( m )  

f(m) = 3.14 (9) 

Equations (8) and (9) define a given hypothetical polymer 
having intermediate characteristics. 

We now attempt to establish that above Tg the fraction P 
varies linearly with RT/Q. In this respect we will not make 
use of the idea formulated by Williams, Landel and Ferry 1 
that Tg is the temperature at which all the polymers reach the 
same value of free volume. We will depart from this concept 
and propose that Tg is the temperature at which all the 
polymers have the same fraction of activated segments (the 
choice of this basic assumption will be justified in the course 
of this paper). Let PT, be this fraction. Boyer 16 formerly 
evaluated the fraction~of holes at Tg by various methods. 
This quantity equals PTg since Boyer considered that free 
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Figure 2 Calculated value of f(m) as a funct ion of m, using equations 
(2) and (7) 
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Table 1 Characteristic quantities and adjustable parameters implied by the model 

Adjustable parameters 

M p V 0 = M/p O vo vi Po 
Polymer (g mo1-1 ) (g cm -3 ) (cm 3) m (kcal) (cm 3) (cm 3) (kg mm -2 ) 

PS 104 1.03 101 30 3.95 16.15 10.82 6 
PVC 62.5 1.39 45 10 3.00 11.50 5.00 11 
PMMA 101 1.18 86 30 4.10 14.40 8.20 19 

Table 2 Experimental data required to test the model 

ACp X 10 2 # X 10 3 
(cal g-1 C-1) Tg (°C) A(~ x 10 4 Ae X 10 4 g2 

(atm. p = 10 kg mm 2 (ram 2 kg -1) 
Polymer Data Adopted Data Adopted pressure) Data Data 

PS 7.19 806 
7.3 92.5 

7.916 10016 

PVC 6.89 757 
7.0 75.5 

7.516 7716 

PMMA 7.09 1037 
7.5 106.5 

8.1716 10516 

3.086 2.296 

3.717 2.607 2.57 

3.107 2.527 37 

volume consists of  holes. His results were found to be in 
good agreement for PS (PT = 0.111) and PMMA (PT = g g 
0.124). We will adopt an intermediate value: 

PTg = 0.118 (10) 

As this value is higher than 0.1, it follows that above Tg a 
linear dependence of  P on RT[Q may be considered (see 
Figure 1). Thusf (m)  and m may be estimated provided the 
proposed definition of  Tg is accepted. 

For T = Tg, equations (2), (8) and (10) give: 

Q/RTg = 2 + lnm ~ 5 (11) 

Equation (11) allows the calculation of  Q from Tg, and we 
can rewrite equation (2) as: 

exp(3 - 5 Tg/T) 
e =  (12) 

1 + exp(3 -- 5TglT) 
The curve calculated from (12) is given in Figure 3. More- 
over, we are now able to give an interpretation of  the follow- 
ing empirical relations previously given by Simha and 
Boyer 14, i.e.: 

ACpTg = 25 cal (13) 

and 

AO~Tg = 0.113 (14) 

These may be obtained from equations (7), (9) and (1 I) and 
from equations (4), (5), (13), respectively, assuming that: 

Q/M = 40 cal (15) 

and 

vo/Vo=O.18 (16) 

Equations (15) and (16) lead to the conclusion that the 
energy Q and the free volume v 0 are proportional to the 
molecular weight and the volume of  a segment respectively, 
which seems reasonable. Equations (8), (15) and (16) give 
constant values only for quantities which depend on the 
chemical nature of  the segment and may vary from one poly- 
mer to another, but equation (10) must hold for all the 
polymers. 

EFFECT OF PRESSURE ON SPECIFIC VOLUME 

To account for the effect of  pressure on free volume above 

~g , we will make a further assumption. We suppose that v 0 
the free volume associated with an activated segment) is 

composed of  v i, an incompressible part related to the local 
configuration which is less compact because of  the local lack 
of  regularity, and v c a compressible part. Let us assume that 
the application of  a hydrostatic pressure p entails a decrease 
of  v 0 and therefore of  v c only. 

We will adopt the simplest law which fulfils the following 
conditions: 

v c = 0 when p = oo 

and 

v = VeO when p = 0 

The perfect gas law is suitable: 

(P + Po) Vcp = PO Vco 

(17) 

(18) 
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Figure 3 Fract ion of  activated segments as a funct ion of  reduced 
temperature T/Tg, calculated f rom equat ion (12) 

where Vcp denotes the value ofv  c at a pressure p, and P0 
denotes an internal pressure. The physical meaning of this 
last quantity is probably related to cohesive forces. 

At constant pressure when a segment jumps from the 
fundamental to an activated state, it does mechanical work 
against the pressure. This work satisfies the following 
relation: 

090 + P) (Vi + Vcp) = PO VO + PVi (19) 

Therefore, when a polymer is compressed, it requires an in- 
crease of energy: 

AQ = pv i (20) 

where povo is absorbed by Q. In this case, taking into account 
equations (19) and (20), equations (2) and (4) become, 
respectively: 

m exp [ - ( I / R T ) ( Q  + PVi,)l 

PP = 1 + m e x p [ - ( 1 / R T ) ( Q  + pvi)l 
(21) 

3C 

2.5 

X 

and 

POVO + PVi dPp (22) 
AtVp = Vo(Po + p) dT 

where the subscript p indicates that the quantity considered 
is related to a pressure p. 

We intend to test equation (22) using literature data. 
Hellwege et al. 6 have performed dilatometric experiments 
over a wide range of temperatures in order to measure the 

pressure effects on thermal expansivity. Their most accurate 
results were obtained on PS; these are shown in Figure 4 as 
points superimposed on a theoretical curve (full tine). This 
curve is, in graphical form, a numerical solution of equation 
(22) calculated as follows. Values of m, Q and v 0 for PS are 
obtained from equations (7), (10) and (4); these are listed in 
Table 1. However, P0 and v i are not known. A possible 
determination is to adjust these quantities in order to obtain 
the best agreement between the response of equation (22) 
and the data of Figure 4. The shape of the curve is found to 
be reasonable and the optimized values of p0 and v i given in 
Table 1, seem to be acceptable. 

It follows from our proposed definition of Tg that this 
temperature must change when the polymer is compressed. 
At Tg, Pp must still equal the value given by equation (10) 
and thus we find from equation (21): 

Q Q + pv i 

grgo RTgp 
(23) 

where Tg 0 denotes the value of Tg at atmospheric pressure. 
This last equation allows for hydrostatic pressure effects on 
Tg to be calculated. 

Using Tables 1 and 2, we have found that for PS: 

dTg  _ 2.4oc/kg mm_2 (24) 
dP 

which must be compared with the value of 3.3°C/kg.mm -2 
given by Hellwege et aL 6. This latter value is probably too 
largebecause it is estimated from isothermal and not from iso- 
baric measurements. 

Let us recall the distinction between both types of 
measurement and refer to Figure 5 where the specific 
volume is shown schematically versus temperature. We con- 
sider a temperature T x, sufficiently above Tg that the poly- 
mer would be in equilibrium, and another temperature Ty, 
sufficiently below Tg that the polymer would be in the 
glassy state. An isobar is drawn for a polymer which is 
cooled from Tx to Ty at constant applied hydrostatic pres- 
sure p (sequence ABCD); an isothermal measurement of the 
specific volume is obtained on cooling the polymer from T x 

2 .0  

Free volume and the plastic deformation process: J.-C. Bauwens 
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© 10 2 0  

P ( kg mm -2) 

Figure 4 Thermal expansivity of PS as a funct ion o f  hydrostat ic  
pressure. Points: • data of  Hellwege et a~.; calculated f rom equation 
(22) using values given in Table I 
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Figure 5 Specific volume as a funct ion of temperature deduced 
f rom isothermal and isobaric measurements {schematic) 

to Ty at p = 0 and then applying p at Ty (sequence AEF). 
It can be seen from the graph that the transition tem- 

perature Tg 1 related to isothermal measurements at a pres- 
sure p, is higher than Tg2 obtained from the isobar related to 
the same pressure (of course both temperatures superimpose 
at atmospheric pressure). The lowest temperature at which 
the equilibrium can be attained quickly is located just above 
Tgl, where both types of measurements merge. 

Heydemann and Guicking ? obtained the temperature 
dependence of the specific volume from isothermal and iso- 
baric measurements for PVC and PMMA. Their values of 
dTg/dp determined from isobaric measurements are given in 
Table 3. The theoretical evaluation of this quantity requires 
a knowledge ofv  i (see equation 33). If we make use of 
numerous accurate data for Aap as a function of p, values of 
P0 and v i may be adjusted to give the best fit to the data (we 
have adopted this procedure for case of PS). Unfortunately, 
there are few such data for PVC and PMMA, because the 
measurements carried out by Heydemann and Guicking do 
not cover an extended range of temperatures and pressures; 
thus equation (33) and experimental values of dTg/dp cannot 
be checked and these values will only be used to determine 
v i from equation (33). These authors compare isothermal 
and isobaric measurements, permitting us to test our model 
from other data, namely, the differences in the specific 
volume found from both types of measurements over the 
glassy range. 

We calculate such a difference and return to Figure 5. 
At Tx, when the polymer is compressed from A to B in an 
equilibrium state, the free volume associated with the acti- 
vated segments decreases according to equation (18). From 
B to C, as the polymer is cooled at constant pressure p, the 
free volume decreases, because the fraction of activated seg- 
ments decreases to reach a value of 0.118 at Tg2 (equation 
10). Below this temperature the molecular motions are 
frozen in and the fraction of activated segments may be con- 
sidered to equal O. 118 and to remain constant in a non- 
equilibrium state - the glassy state. 

However from E to F, at Ty the polymer is compressed 
in the glassy state, the free volume cannot reach its equili- 
brium value and its compressibility does not differ from that 
of the polymer itself. It follows that the decrease in the 
specific volume is far smaller from E to F than from A to B. 
Thus the specific volume of a polymer is higher at F than 
at D, although both states are related to the same temperature 

and pressure and, in our opinion, the same value o fP  = 0.118. 
Let v01 be the value ofv 0 related to F, expressed by: 

v01 = v0(1 -~gp) (25) 

where/3g denotes the compressibility factor in the glassy 
state. 

Let v02 be the value ofv 0 related to D; this value does 
not differ from that related to C and therefore can be evalu- 
ated from equation ( 19): 

povo + pv~. 
V02 - (26) 

PO+P 

Below Tgl, a difference Av exists between values of the 
specific volume determined at a given pressure and tempera- 
ture from isothermal and isobaric measurements. If we 
assume that in both cases the fraction of activated segments 
equals PTg, the expression from Av may be obtained from 
equations (25), (26) and (10): 

Av = ( V/ Vo)(vo1 - vo2)PTg = 0.1 18 ( V /Vo) (vo1  - v02 ) 

(27) 

where V denotes the specific volume in the glassy range at 
atmospheric pressure. 

Thus, it can be seen from the proposed model, that the 
relative difference in the specific volume Av/V depends on 
five parameters: m, Q, v O, v i and Po. For PVC and PMMA, 
the five parameters were calculated from equation (7), (10), 
(4), (23) and (22) using experimental values of ACp, Tg, 
Aa, dTg/dp and Aap, respectively. Results and data 
are collected in Tables 1, 2 and 3. Now that all the required 
parameters are determined, no further adjustments need be 
made to calculate Av/V for PVC and PMMA from equations 
(25), (26) and (27). Therefore a good agreement between 
calculated and experimental values of Av/V constitutes a 
check on the model. Results and given and compared in 
Table 3, and fairly good agreement is observed, although 
there is some difference between the two polymers. 

ELEMENTARY PROCESS OF PLASTIC DEFORMATION 
IN THE GLASSY STATE 

We have previously established a temperature, strain rate and 
pressure-dependent yield criterion ~7, which may be simply 
expressed by: 

Table 3 Comparison between experimental and calculated values 
of dTg/dp and A v / V  

dT,/dp Av/V 
( ° C / k ~ m m - 2 )  ( a tp  = 10 kg/mm 2) 

calc. calc. 
Polymer Data f rom (23) Data f rom (27) 

PS 3.3 6 * 2.4 - - 
PVC 1.4 ? -- (7 +- 0.4) x 7.3 x 10 -3 

10-3 7 
PMMA 1.8 7 -- (2.4 _+ 0.2) x 2 . 4 x  10 -3 

10-3 7 

* Probably too large (see text)  
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Table 4 Values of the constants characterizing the plastic deformation process (theoretical values are calculated for n = 25) 

O 0 - L o g  2C 
(kcal) (C in s) A 

(10-4kgmm -2) eO /~ AVo/vo 
Polymer exp. calc. exp. calc. exp. calc. exp. calc. 

PVC 70.511 75 3811 38 711 1.06 0.1317 1.14 
PMMA 98.521 102.5 5121 50 5.521 0.71 0.1821 1.41 

roct+/ap = f(~, T) (27) 

where roct denotes the octahedral shear stress, first intro- 
duced by Nadai ~s and e the strain-rate,/a is a constant, the 
physical meaning of which has been proposed in a previous 
paper 19. In parallel with this criterion, we describe 2° the 
yield behaviour by an Eyring-type equation 13 derived from 
the theory of activated processes, which can be rewritten as: 

o -- [3/(2) 1/2] UP 
In ~ - - In 2C + Qo/RT (28) 

A T  

where o is the tensile yield stress, A and C are constants and 
Q0 denotes the activation energy of the yield process. 

Equation (28) has been successfully tested over an ex- 
tended range of temperatures and strain rates ~°-~2'21 for at 
least three glassy polymers. We believe that the formalism 
is suitable, but the constants A and C still need to be ex- 
plained as a function of the segmental motion leading to the 
plastic deformation. Of course, the activation theory of 
plastic deformation implies that A and C are related res- 
pactively to the activation volume and the jump frequency 
but these quantities have not yet  been estimated or checked 
satisfactorily. This model overcomes this difficulty. 

We start from the assumption that the molecular origin 
of  the yield process consists of  a change of configuration. 
To produce this, n segments must be activated simultaneously. 
When no stress is applied, the frequency of such an event is 
given by: 

2 k T  
v = [m exp ( -Q/RT) l  n (29) 

h 

where kT/h denotes the Debye frequency factor and k and 
h and the Boltzmann and Planck constant, respectively, (the 
reason for using the same parameter Q as in equation (2) 
will be given in the discussion). When a stress o is applied, 
the change of configuration gives rise to the deformation e0 
of volume nV O. The work done by this stress is: 

W o = nVoeoo (30) 

According to the Eyring theory, the strain-rate e may be ex- 
expressed from equations (20) and (30) by: 

k T  n(Q - eo Voo) 
(31) =e O -h-m nexp - R T  

which can be rewritten as: 

kT  nQ n eoVo o 
lne = l n - - e 0  + nlnm - - -  + - -  (32) 

h R T  R T  

When the hydrostatic p is applied, equation (32) becomes: 

k T  nQ neoVo o npA V 0 
In e = l n - - e 0  + nlnm - - -  + - -  (33) 

h R T  R T  R T  

where A V 0 denotes the volume increase required to activate 
a segment at a pressure p when a stress o is acting. It follows 
that A V 0 must be at least equal v 0. 

Equation (33) must be compared with equation (28) which 
characterizes the strain rate at yield from a macroscopic 
point of view. The quantities Q~ C, A and/~ can now be 
identified as: 

Qo = nQ (34) 

kTeo mn 
C -  - -  (35) 

2h 

R 
A - - -  (36) 

n~oVo 

(2)112A V 0 
ta = (37) 

3eoV0 

For PVC and PMMA, experimental values of  these four 
quantities are known from our previous work 11'2° and re- 
corded in Table 4. The theoretical evaluation of Q0 and C 
using equations (34) and (35) and some of the characteristics 
given in Table I requires knowledge the value of n (i.e. the 
number of  activated segments giving rise to the plastic defor- 
mation process). This number has been adjusted in order to 
obtain the best fit between experimental and calculated 
values of  Q0, C and A, keeping in mind that e0 must approach 
unity. The value 

n = 25 (38) 

was finally chosen. This value agrees with the volume relaxa- 
tion environment of  26 monomer units proposed by 
Robertson 22 in a treatment based on theoretical considera- 
tions, e0 was then evaluated from equations (36) and (38) 
and the experimental value of  A. Results are given in Table 
4. As expected the values approach unity. Qo and C are 
calculated from equations (34), (35) and (38) and collected 
in Table 4. 

Experimental values of~t allow calculation of  A V 0 using 
equation (37), and AVo/v 0 given in Table 4" this ratio is 
found to be slightly greater than unity, which is plausible. 

DISCUSSION 

The rrodel accounts for thermodynamic properties as well as 
the yield deformation of glassy polymers. However, this 
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Figure 6 Schematic variation of the energy barrier (Figure 6a) and 
the cohesive force F (Figure 6b) related to a segment as a function of 
3'. F1 and F 2 are the components of F (Figures 6c and 6d) 

model is an approximation because it deals only with average 
values of  the quantities considered, although it considers 
amorphous materials known to have local structure which is 
not uniform and,  moreover, depends on aging and thermal 
history. This implies that in the glassy state, some of  the 
parameters such as m and Q must be replaced by distribution 
functions which may be modified during thermal treatment. 

This model is not applicable either to deformation pro- 
cesses taking place above Tg, because these processes are 
probably not related to activated segments but to the diffu- 
sion of  the free volume present in the polymer. 

Returning to the proposed definition of  Tg, we point out 
that this implies equal segmental mobility for all polymers at 
this temperature. Indeed, from equations (29) and (38), the 
frequency at which the configurations change at Tg is given 
by: 

25Q 
2kTg m 25 exp (39) 

VTg- h RTg 

and maintains a quasi-constant value providing PTg is the 
same for all polymers as assumed here. 

The concept that Tg corresponds to a universal value of  
segmental mobility is generally aceepted in the literature. 

Finally, we have to justify the use of  the same parameter 
Q for the mean increase in energy of  an activated segment 
(equation 2) and for the activation energy related to the 
rate process (equation 29). We assume that the change of  
configuration which characterizes the rate process requires 
the simultaneous activation of  n se~nents. Let 7 denote the 
elementary deformation involved in such a process. The 
cohesive force resulting from this deformation is the sum of  
the forces related to each segment. Let F be the force acting 
on one segment. It derives from a asymmetric energy bar- 
rier. The variation of  both quantities versus "r is schematically 

Free volume and the plastic deformation process: J.-C. Bauwens 

represented in Figure 6 (a and b). F may be considered to 
be composed to two components: F 1, a force deriving from 
a symetrical energy barrier, having a positive and negative 
symmetrical variation versus ~/ (see Figure 6c) and F 2 a force 
which always remains positive (see Figure 6d). The sum of  
the components FI related to the n segments is statistically 
low in any state of the deformation, because it is highly im- 
probable that the energy barriers of the n segments are sur- 
mounted in phase. Thus the contribution may be neglected 
and only the sum of the F2 components (always positive) 
has to be taken into account. The energy related to F 2. 
(area under curve Figure 6d) is Q, the difference in the 
energy barriers related to the ground and activated states, 
respectively. This is why the mean activation energy charac- 
terizing the rate process for plastic deformation equals nQ 
(equation 29). 

CONCLUSIONS 

(1) The formation of  free volume and the molecular 
motions giving rise to plastic deformation in the glassy state 
arise from the same process. It implies the transition of  seg- 
ments from fundamental to activated states, the length of  
these segments being about one monomer unit. 

(2) Plastic deformation in the glassy state requires the 
cooperative motion of  about 25 segments. 

(3) The glass transition temperature corresponds to a 
constant fraction of  activated segments and not to a con- 
stant value of  free volume. 
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